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ON THE CHOICE OF VARIANCE
FOR 711E LOG RANK TEST.

by

Mark Brown

ABSTRACT

The log rank test is widely used for comparison of survival curves.

This paper examines various estimators for the variance of the log rank

test statistic. These include the mantel-Haenszel variance, the permu-
tation variance of Peto and Peto and several newly proposed estimators.

The results generalize to a wide class of test statistics for the two

sample problem with censored data.
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1. Introduction. The log rank test is widely used for comparison of

survival curves. There are two versions of the test which differ in the

choice of variance for the same test statistic T. The N4H(tantel-Haenszel)

variance, an estimate of Var T which is unbiased independent of differences

in censoring, and the permutation variance of Peto and Peto, for which the

variance is computed under the assumption of equal censoring.

This paper examines the choice of variance. It is observed that for

equal sample sizes the MH variance tends to underestimate the true variance

when T is large in absolute value. As this is the situation where rejection

of the null hypothesis is to be seriously considered, it appears that the

true type I error will tend to be. higher than that assumed, and the reported

P value will tend to be too low. Examples with small sample sizes are given

to illustrate this phenomena. Further work is needed to see if P values are

seriously distorted for larger samples.

In section 4 it is shown that under equal sample sizes the permutation

variance tends to overestimate the true variance when censoring is unequal.

It thus appears prudent to use the permutation variance rather than the 14

variance in assessing significance.

In section 5 alternative variance estimators are proposed.

The log rank results generalize to a wider class of test statistics.

This point is discussed in section 6.



2

2. i,eview of the log rank test. Sample 1 consists of n individuals and

sample I of n individuals. For eaca we observe eitaer the time of deati

or censoring wLichever occurs first, and we know which of the two takes

place. For simplicity we assume that no ties occur among the K uncensored

observations in the combined sample which are labeled as tI < t2 ... < tK.

define Ri to be the number of patients in the combined sample at risk at

time ti, i.e. those for whom the minimum of the death and censoring times

are 2 t . Similarly Rli(R2i) is the nunber of patients at risk from group

1(2) at t7. define 6. = 1 if the death occuring at ti is from sample 1, 0

if from sample 2. Define NI = , 6., the number of uncensored observations

from sample 1. The hypothlesis of interest is 110: The survival distributions

of groups 1 and 2 are the same. The alternative can be one or two-sided,

the one-sided alternative favoring group 2 survival would be Il: The hazard

rate for group 1, hi , exceeds that for group 2, h2, in the range of interest.

The log rank test statistic is defined by:

K iR.i K R.
(2.1) T ai =6 N 1

If censoring is assumed to oe independent of survival then inde-

pendent of differences in censoring for the two groups we have:

(2.2) Ei T = 0

(2.3) E T > 0

The test of H0 vs l under the Mi(Mantel-liaenszel) approach is to

reject 11 for T large: the distribution of T under H is approximated by a
0 0

normal distribution with mean 0 and variance:
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(2.4) 2 K R iR 21
OtH l I

2The 1H variance, 0., is an unbiased estimator of VarHO T, independent
U

of differences in censoring between the two groups.

Peto and Peto [10] observed that under the assumption of equal censoring

a test based on the log rank statistic, T, can be interpreted as a sum of

scores rank test. Define the score of a patient with observation Z as

UL-n € - 1, where 4 .1 if Z is uncensored. Then T- 1

i:tiZ It e C if Z is censored. group

The permutation variance of T is easily computed as:

(2.4) 2  [K 1
(p C) (nm)(n+m-l)

The permutation test based on T is a conditional test given A, where A

is the sample outcome with group identity of patients deleted. In the absence

of equal censoring neither the MH test nor the permutation test based on T

are conditional tests given A. The conditional mean of T under H0 given A

depends on the censoring and will generally not be zero. Furthermore 2

is generally not conditionally unbiased for VarH (TIA).
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3. A discussion of the M-H variance, Suppose that n a u. Below is a

plausibility argument for the assertion that the W41 variance tends to

underestimate the true variance, VarH T, when T is large in absolute value.0

A consequence of this would be exageratedly small P values under the MH

test. The plausibility argument is difficult to quantify. Illustrative

examples with small sizes are given, which do indicate the existence of a

problem. Further work is needed to examine how serious the problem is for

larger sample sizes.

Consider the sample points which lead to a large absolute value of T,

and thus lead the statistician to consider rejection of HO . In general they

are characterized by an excess of uncensored observations from one of the

samples. This leads for many i to an inbalance between Rli and R2 i causing

R R2li ito be small, and consequently a 2 to be small. Large values of

R i

ITI tend to be accompanied by small values of cMH causing exageratedly

large ITI/aNH, and P values which are too small. The statistician is observing
Rl

-i close to zero or one, seeing that it has resulted largely from an in.
Ri

balance in deaths rather than censoring, and then estimating the variance at

Rli 2that stage by 2i is ignoring the fact that under H0 -i should not be
i

as extreme as in the current case. As the statistician is attempting to

estimate the variance under HO, he is ignoring an important consideration.

The fact that in other cases (ITI small) ignoring similar information leads

2to an overestimate, and the two balance out to make 0 2 unbiased, does not

alleviate the difficulty.
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below are two cases, n - m u 3, and n m m = 4, both without

censoring.

Table 1 below considers n a m - 3. The values of a2  appear in

column 1. In column 2 the average value of ITI is computed for sample

points with common 02 . Note that as 2 increases ECITI 12Jdecreases.
S2 ndiTieuls.b

The sample correlation coefficient between o2 and ITI equals -.86.

The average of o over the 20 sample points equals the permutation

variance 1.065. If the ranks 1, 2, 3 are observed for sample 1 then

the exact P value is .05; the P value using a normal approximation

with permutation v&:iance is .0365; the P value using 2M1 .68 as

approximating variance is .0124.

Table I (n-m=3; no censoring)

S E(ITI I 2 number of cases

.68 1.85 2

.90 1.52 2

.96 1.17 4
1.15 .52 4
1.21 .50 8

Table 2 is similar to table 1 with n n m a 4. In this case the

2
sample correlation coefficient between al 8

higher in aosolute value than for n a m - 3. Tue permutation variance

equals 1.51.

Eq"
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Table 2 (ni-n4; no censoring)

21 E(IT ) number of cases

.88 2.54 2
1.06 2,29 2
1.14 2.09 2
1.17 1.85 4
1.29 1.95 2
1.37 1.75 2
1.39 1.52 4
1.43 1.17 4
1.46 1.17 8
1.54 .95 4
1.62 .75 4
1.64 .54 8
1.68 .50 8
1.71 .50 16

Table 3, again for n m -4 without censoring, lists the 7 largest
1 2 7

values of T with corresponding exact P values I.f, .. t P, and P values

under the normal approximations with both IH and permutation variance. It

is seen that the P values are systematically too low using the MH variance.

Table 3

2 2
value of T Exact P value a P value o2 P value

2.54 .0143 .0035 M0194
2.29 .0286 .0133 ,0312
2.09 .0429 .0255 .0446
1.95 .0571 .0424 .0558
1.92 .0714 .0380 .0592
1.78 .0857 .0502 .0738
1.75 .1000 .0667 .0770

The fact that in table 3 the permutation variansce gives a better approxi-

mation is not surprising. Ve are computing the exact P value under the con-

ditional distribution of T given A, under the assumption of equal censoring.

This is the "home court" for the permutation variance. At this point we are

not arguing the virtue of the permutation variance, but are illustrating the

beavior of 2 described earlier.

beaio L
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Note that when n = m and censoring is equal a simple symetry argument

shows that Cov(aoT) 0 0. Thi, is an example for which two random variables

are uncorrelated but highly dependent.

If one could show that the MH variance is the conditional variance of

T given an appropriate function of the data for which the conditional mean

2
of T remains zero, then the above mentioned behavior of would no longer

be disturbing. The MH variance would be the appropriate variance for a well

defined conditional experiment. No such interpretation has been offered

however and it is clear by simple counterexamples that any such interpretation

would have to be asymptotic rather than exact.

II
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4. A property of the permutation variance. Consider the case of equal

sample sizes and random censoring, with the group I censoring distribution,

H, allowed to differ from the group 2 censoring distribution I. Recall that

K1ap 22-) K-1 , the permutation variance, is a function of (K,RI,..., K

which under equal censoring is the conditional variance of T given (K,Rl...,RK).

2 2 2.
In theorem I below it is shown that 2 , where a is a function ofP

(K,Rl,...,RK) depending on (F,H,I) which is unbiased for VarH T. Thi-. for
0

any (FH,I), E H 2  (:2) Var HT.

2
In view of this property, the fact that .2 does not vary with T for

p
P2

fixed (K,RlV...,RK) as a does, and the difficulty with -a discussed in

section 3, it would seem prudent under approximately equal sample sizes to

use 2 rather than 2 in assessing significance.

The following two lemmas are needed in the proof of theorem 1.

a.

Lemma 1. Let a [ and 8 = be two probability distributions on

(0,1,...,m} with a 0 ! 0 and - i 1, ... , m. Then a is

0 0 i-i Bi-l
m m

stochastically larger than 8 i.e. a sif r = 0, ... , m.
r r

mKl m a.

Proof. For any k, aj . I -
ak k j=k 'k

1 kl k i X 8.. Therefore

juk=l kjk+ l k
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-k Dk i r-l r-l

k s (l-hkc8)) ( k s (l-hj(a))• Z ak. [I Oj O ij r 0 o0 I
k

Lema 2. Let X ' B(n,p1), Y "' B(nP 2). Then EEX(r-X)IX+Ynr) is maximized

when p1 , P2. Its maximum value is 2(2-1)

Proof. (i) Case 1, r s n. Define:

f n j (c-+cj), j <r

(4.1) Yi(c) j
,r/2 3 r p r even

and
yi (c)

(4.2) Gi(c) [r iO, .. , Cr/23

j=2o Yj (c)

Note that:

(4.3) E(X(r-X) IX+Y=r) ' o(r-t) aitc )

where

(4.4) c =pl1q

p21q 2
Since t(r-t) is increasing in the range [,[2]], (4.1) will be maximized

by that value of c(if such a value exists) for which the probability distri-

bution a(c), defined by (4.2), is stochastically largest.

We now prove that c 1. gives the stochastically largest distribution.

By lemma 1 it will suffice to prove for abritrary positive c that:

(4.5) aO(1) < aO(c)

(4.6) (l) i, [r/2
lG aild1) i-l (c)' "" r

i
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The statement (4.5) is equivalent to:

(4.7) [zna I )r2

c+c r- .

.-The right side is a weighted average of 2 while the left side
puts all its weight on the value -+c- . Since the function g(x) = x crx

is decreasing in EO,r/2.) and g(x) = g(r-x), it follows that for fixed c g

is maximized at x = 0 or equivalently at x - r. Thus (4.S) is proved.

To prove (4.6) note that:

r-1

ai(c) i r-i r odd, 1 = , ... T

(.) a il(c) -Ai ci-l r-i-lp vn r-:2r-2ai-l~ ici-lcr -l t even, i = I, ... ,---

al(c) cr/2  r even, i r/2
(4il(c) r/2 cr/2-l+cr/2l

where A. is a constant independent of c. In both cases ((4.8) and (4.9) a

1

simple differentiation argument shows that the maximum is achieved at c - 1.

This concludes the proof of case 1.

(ii) Case 2, r > n. Suppose r > n. Then (n-X) + (n-Y) = 2n - r c n, thus

by case 1, EC(n-X)E2n-r)-(n-X)jilX+Yrl is maximized by choosing p1 = P2. But

(n-X)E(2n-r)-(n-X)l = X(r-X)+n(n-r). Thus maximizing EE(n-X)L(2n-r)-(n-X)] IjX*-ri.

is equivalent to maximizing E(X(r-X)jX Ywr), and case 2 is proved.

Finally note that when p1 =

n2r 2 [nl)[n-r_t)

Erf2 (r-t)a(() 0 t,- nr~r-1)I.
ZOrt-0 r 2 (2n-1)

0

l_ _ _ _. ... . . .. .. .. .. .. .. .... " h.. .
,. - ' ;- 7 --..- ' . j
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Theorem 1. Assume n a a. Let the censoring variables for sample 1 (2) be

i.i.d. with distribution H(I). Assume that the censoring variablet are

independent of the survival variables and that the two groups are indepen-

dent of each other. Then:

2
(4.10) E H V a Var T

Proof. The proof below is heuristic but can be made rigorous using martin-

gales. For j a 1, 2 define R.(u) to be the number of group J patients at3

risk at time u-; define R(u) * R1 (U)R 2 (u). Define H(u) to be the history

of the process until u; this includes all censored and uncensored observations

and knowledge of group membership of the patients involved. Define N(t) to

be the number of uncensored observations in [O,t], and let h denote the

common hazard rate function for the two groups. Note that under HO0 dN(u)

0and H(u) are conditionally independent given R(u), with

B(dN(u)IH(u)) - E(dN(u)JR(u)) - R(u)h(u)du. It follows that:

E Hog (H(u))dN(u)J ] EH CE (g(H(u))IR(t)dN(u))
0 H00H

E HCEH0 (g(H(u))IR(u))R(u)h(u)duJ

Now (uR 2 (u) (u) is unbiased for Var H T. Defining
R (u) 0

a f-2 , - B(RI (U)R 2(u ) JR(u))dM(u), and using (4.11) with

g(H(u)) u Rl(u)R2 (u), we obtain:

(4.12) H varH T
0 . 0
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We wish to compute ;2 under known (F,H,I). For convenience we adopt

the convention of using left continuous rather than right continuous cdf's.

Thus, for example, I1(x) P H11(Xcx), and ff(x) - P H(X2:x). Now R ICU)'LBO(nWU)fI(u))

and Rwhere B(n,p) denotes the binomial distribution witha 2 R(u) -B (m,'F(u) f(u)),i
parameters n and p. By lemmna 2, E 11 (Rl(u)R 2(u)IJR(u)) ismaximized when

0
ni 1(u) - 1(u), the maximum value being2 -21)

Thus a2-f21  [n R~u)(R )R)l fJ (Ru)R) Ru))()
R 2  nl -u)2

and 22  n-1 f- 11 1 2
R u)(U

2 2

adEH ap2 aT

I..____0 0_____0
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S. Alternative variance estilwators. It was shown in section 4 that is

unbiased for VarH T and in the case of equal censoring reduces to the per-0 2.

mutation variance a2; under equal censoring a is the appropriate variance
2

for a conditional test given A.

The estimator a2 also works well in the following case. Assume that

all group I observations are censored at s and all group 2 observations at

times which exceed s. Define N(s) to be the number of uncensored observations

from the combined groups in LO,s]. Then ;2 reduces to:

nm :;(s) n~m i
(5.1)

(n+m)(n+m-1) 1 n+m'-*l

Note that (5.1) is unbiased for Var T and is a function of N(s). Under
Ho

H0 the conditional distribution of T given N(s) is independent of F and

EH (TIN(s)) = 0, therefore Var (TfN(s)) is also a function of N(s) which is
00

unbiased for VarHT. Since N(s) is complete (follows from completeness of

0 ~2

the binomial family) it follows that o 2 Var (TIN(s)). Thus once again

;2 ~0
reduces to a conditional variance and is the appropriate variance for a

conditional test.

One further example to illustrate the use of o2: Suppose that all

patients enter the study at the same time, censoring is due only to termi-

nation of the study, and the study terminates at wk, the time of the kth

smallest order statistic from the combined sample. In this case ;2 is

easily computed to be:

(5.2) nm k nm-i

(n.m)(n+m-l) I n+m-il
,l
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Since (5.2) is unbiased for VarH T and is a constant, it coincides with
H0

Var HOT. This implies that VarH 0T is independent of F, a fact which can

easily be independently verified. Note that in the special cases k - n+m and

2
k a n+m-I (5.2) coincides with 

a 2
p

Note that ;2 can only be computed under censoring assumptions. For the

three specific cases discussed above, ;2 gave useful and appropriate variances.

(5.3) Case of known censoring times. Suppose that all censoring times, including

those corresponding to uncensored observations are known. For example, if the

data is analyzed at time T and the only cause of censoring is termination of

the study, then a patient entering the study at time x has a censoring time

of T-x.

In this case we think of the censoring times as fixed numbers. Hypothetical

repetitions of the experiment yield different survival times but the same fixed

censoring times. The variance of the statistic T under H0 will depend on F.

This variance can be unbiasedly extimated by 2 . To do so we need to compute

EH (RI(U)R2 (u)(R(u)) under known censoring times. Define t.(u), j - 1, 2 to be
0

the number of group j patients with censoring time a u, and e(u) a 1 (u)+L 2 (u).

There are 1(u) potential members of the risk set at time u all equally likely

under H to be included. The conditional distribution of Rl(u) given R(u) is

thus hypergeometric. It easily follows that:

(5.4) E H (R1(u)R2(u) R(u) * ti • (R(u)-I)

To distinguish the estimator in the case of known censoring from pre-

viously considered cases we will denote it by a . Then from (5.4) and (4.11):

-- . . .. . . ' ..... .. . .... li ... . I.. .n i .. . .. ... .. Ii~~__... ._ _....._ _._--_ _,_.



(55 *k t 1it2 Ri1
(S.S)

k Li 2i(Ri-l)

i-i1 1t(t 1 -l)Ri

(5.6) EH0 2 VarH0T

where tji tj(ti), J - 1, 2 and'Z i  tli * t2i.

Note that when Zi * Rli R i - 1, ., ,then 02

Thus a and oW will be close together when most of the uncensored abser-

vations occur very shortly before their censoring times. Also note that

when t n, t2i a then a *a . The reason for this is that under equal

censoring all n.m patients have the same probability under H0 of being in the

risk set at time u.

(5.6) Remark. The exact variance in the case of known censoring times is

computed by:

VarHoT" a E L1  (u) o(u)1 ((u)- (R(u)-

f IL(u) - I-(F(u) dF().
M) Wu)-1) L F(u) )

(5.7) Remark. It is undesirable on philosophical grounds to have the

statistical procedure depend on potential but unrealized censoring. Pratt

[2J has interesting comments on this point and Cox [3] and Efron [S] briefly

mention it as well.
2 2

The estimator a depends on unrealized censoring times while a02  a2V

and oa2 (defined below) do not. Nevertheless, when all censoring times are

known I would use a I would not throw out part of the information just to

avoid the above philosophical objection.

1 -
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It is clear that the values of the unrealized censoring times do not

provide intrinsic information about survival, the attribute of interest.

However they do provide information about the distribution of the test

statistic under hypothetical repititions of the experiment. In a frequentist

approach such information is often useful. To a Bayesian or follower of the

liklihood principle it is irrelevant.

(5.8) Remark. The rational for a is as follows. The problem of estimating

VarH T can be reduced in an appropriate sense to that of estimating

y(u) a E~ H (dN,(u) - dN(t)) 2dN(u)], where R1, R, N have previously been
0 0 R(u)

defined and Nl(t) is the number of group 1 uncensored observations in CO,tJ.

The M.H estimator estimates y(u) by

Y (u) - EHL[dNl(u) - RIi J (u) 2 ,u), , udN 1u) ;2 estimates y(u) byMH(u 1E2(u

;(u) - EH0(YVi, u,(u) it(U

In comparing y(u) to Yd.(u) we see that Var, (y(u)) < Vart, (y (uJ) while

-2 2
COV Ho0(u),Y(v)) •COVH0oi(u) ,¥NICU));it thus follows that Varo VarHoO m..

To interpret this result properly recall that aM is computable from the data

without censoring assumptions while a requires special assumptions. When
22 22 is computed under specific censoring assumptions then VarH a 2 VarH0° MH

under these assumptions, but not necessarily more generally.

While reduction in variance is welcome my main reason for employing ;2 is

that I believe it will work better than a2  when ITI is large. The difficulty
MH
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in estimating y(u) when ITI is large is that we need an estimate of variance

under H 0 from data which is extreme under 110. We do not want to use the

observed variance yCM(u) which we know is untypical of H 0. The estimator

y(u) removes the dependence of the variance estimator on R,(u)/R(u) and

attempts to replace the observed variance y (u) by a quantity which better

estimates its expection, y(u).

The computation of y(u) is simple under assumptions which imply that

there are a pool of patients who are potential members of the risk set at

u, and the R(u) patients who are actually in the risk set are chosen from

the pool by random sampling without replacement. This structure characterizes

the examples we have so far studied.

(5.9) Random Censoring. If we assume random censoring with distribution iti

for group 1 and I for group 2, then the variance of T depends on (F,H,I) in

a complex way. The unbiased estimator 2 also depends on (F,H,I), specifically:

(5.10) (R1(u)R 2 (u) JR(u)-r) [ [M r t)

where:

(S.11) a - min(0,m-r), 8 = max(r,n), c(u) H(u)(l-F(u)I(u))

T(u) (l-F(u) FCu))

Rather than try to estimate ;2 we opt for a different approach. The

estimator a requires knowledge of 1 i' 12i i = 1, ... , k. We no longer know

the censoring times corresponding to uncensored observations. However,

defining Nj,i j - 1, 2 as the number of group j observations among the first

i uncensored observations, we know that Ri.s1 t. s R. + Nji.i, J 1, 2.
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This suggests estimating t1 by:

(5.12) £i = 6  (i

3i <1 ii(t)

where 6 a 1 or 0 depending on whether the jth uncensored observation is

from group 1 or 2, and H is the Kaplan-Meier estimator of the censoring

distribution for group 1.

By Efron's ([S]) interesting observation of the self-consistency property

of the Kaplan-Meier estimator:

(5.13) ain~

ii *n(ti)

(5.14) 2i mI(ti)

*2
We now define an estimator a by substituting ti l 2i' t, 0'eIi + t2i

for z1i' £2i and t. in a (5.5) obtaining:

(5.15) *2 k li t2iR i - )

*2 

111(^-)

The estimator a performs well in the following cases. If group I

observations are censored at s, group 2 observations at times which exceed s

then a*2 coincides with (5.1). If censoring occurs at wk, the kth smallest
*2

order statistic in the combined sample, then a coincides with (5.2). In

the special case k a m+n (corresponding to no censoring) a* 2 equals 2s. if

H and I are approximately equal, indicative of equal censoring, then a will

be close to o.2
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The estimator a*2 is an estimate of ;2 which in turn appears to be

superior to 2 (see remark (5.9). It is hoped that a*2 will generally be

better than a, particularly when ITI is large.

(5.16) Remark. Another expression for Var HT under random censoring is:

(5.17) Var H T a nm f Ffu)TCu)F2(u)E rRC--U ,h(u)du

where B u B(n-l,fl(u)F(u)), BI u B(m-l,I(u)F(u)) with B and B' independent of

each other and of R(u). Estimating nTO(u) by tl(u), mT(u) by t2(u), F
2 (u) by

R(u)(R(u)-l) h(u) by dNu), and approximating E l- y 1 in (5.17) yields

L(u)(C(u)-I) R(u) LB+BI'2j

*2
the estimator a (5.1S).

*2 2
(5.18) Remark. Both a* and a throw out observations which are censored

prior to tl, that is they treat the data as if n = RiI, m a R21 and no un-

censored observations occur prior to t V This is quite reasonable and

desirable. In fact attention should be focussed on VarH 0(TRi1,R21) rather

that Var T, and a 2 and a2 should be adjusted accordingly.
HO p

(5.19) One more censoring situation. Termination of the study occurs at

time T for group 1 and T2 for group 2. Termination is one cause of censoring;

other causes are present such as withdrawal from the study, loss to follow-up,

etc. A group 1 patient entering the study at time x has a maximum censoring

time of T1 - x but may be censored sooner; similarly for group 2. Define

Qis t m 1, 2 to be the Kaplan-Meier estimate of Qi the group i distribution

of censoring due to causes other than termination of the study. In estimating

the observations corresponding to death and censoring due to termination
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of the study are treated as censored, those corresponding to other causes

of censoring are treated as uncensored. Define:

(5.20) M ~() sT,

0,21 t -T s

(S,21) &* Q2 (t), t' 2 -s

Let x. denote the entrance time to the study of the patient with the
1

uncensored observation at t i. Finally 6i - 1 or 0) depending on whether the

patient with the uncensored observation at t . was from group 1 (t6e1) or

2 (5.0). Estimate e~t 2  by:

(5.22) t aR1  + 6..2
li i jul Ql x (t)

i-i Q2  (Y1
(5.23) t - R2~*~(-.

The values tli t2i are then substituted into the expression for C'2 (5.5).

In the above Qand Q2follow the earlier mentioned convention of left

rather than right continuous cdfs.
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6. Comments and Additions.

(6.1) Consider tite class of test statistics:

(6.2) Tg - . g(R.) 6i -

The function g is ciuosen to achieve good local power against specific

types of alternatives. The choice g(R) = R corresponds to Gehan's L6]
2 an 2

generalization of tne Wilcoxon test. Our remarks concerning o2 and

founjid in sections 3 and 4, carry over to T . Tae estimators 2 andg

a*2 are now defined by:

*2 Z t (R -1(6.3) g li Z2i g 2(R

*2 K t li -2 i(Ri-l) 21a g (Ri)
Z I )(6.4) Og i=l Li(l-11. g 1R i

For the case g(r) = r- use of (4.1U) gives tne following expression

for the variance of T under known censoring times:
g

(6.5s) fZ 1 (ut 2 (u i [CuldF Cu

Taking expectations in (6.4) gives the variance under random censoring:

(6.6) nmJF(u)I(u)(u) dF (u)

For the case g(r) = r tne variance under known censoring times is

given by:

(6.7) ft I (Uf2 (u)F(u)[C(u - 2).-Cul+2 dF (u)

... ... .. ..... ...
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The variance under random censoring equals:

(b.8) mfR IT F_ (n-1)F G+(m-l)T T+2jdF

working frowt (6.5) and (o.7) by estirmating tuese expressions yield
*2

estimators which are practically tne same as a

(6. ) The Nt approach as extended by Mantel [81 combines a class of dependent

chi-square tables by summing the variances of appropriately defined uncorre-

lated random variables across the several tables. I believe that the same

behavior of the variance estimator discussed in section 3 occurs more generally.

For a simple example suppose that N U n and the conditional distribution of

Ni given Ni_l is B(Ni.I,p), i = 1, 2,....

We wish to test p = pO vs p < po. The appropriate version of the Mu

statistic would be:

(6 .1 0 ) 
T _ _ _ _ _

Vp~qJ~i_1 q0

where M . N1 . H0 will be rejected for T negative and large in absoluteV 
i

value equivalently for -T large and positive. But the numerator of -T,

n-1qo, is large when 14 is small, in which case the denominator A is

small. In this case n-Mq0 and Mpoqo have correlation -1.

The true distribution of '1 is negative binomial with parameters n and qo:

(6.11) Pr (Mr) n- P 0 q0 r a n

The variance of Mq0 - n under i0 equals npO; its unbiased MH variance estimator

is Mp0q0 .

The distortion of P values in this case is serious even for fairly large

values of n.

The NIH procedure is clever and useful, but should be used with care.

. .. .... .. . .. .. .. . . ... .. . 2;2i i; 5O M . 2
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